Fractional Fokker-Planck Equation in Time Variable and Oscillation of Cumulant Moments
نویسنده
چکیده
Fractional derivative in time variable is introduced into the Fokker-Planck equation of a population growth model. It’s solution, the KNO scaling function, is transformed into the generating function for the multiplicity distribution. Formulas of the factorial moment and the Hj moment are derived from the generating function, which reduces to that of the negative binomial distribution (NBD), if the fractional derivative is replaced to the ordinary one. In our approach, oscillation of Hj moment appears contrary to the case of the NBD. Calculated Hj moments are compared with those given from the data in pp̄ collisions and in ee collisions.
منابع مشابه
Fractional Fokker-Planck equation and oscillatory behavior of cumulant moments.
The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation in order to investigate an origin of oscillatory behavior of cumulant moments. From its solution (the probability density function), the generating function (GF) for the cor...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملNumerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks
Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...
متن کاملStatistics of the stochastically forced Lorenz attractor by the Fokker-Planck equation and cumulant expansions.
We investigate the Fokker-Planck description of the equal-time statistics of the three-dimensional Lorenz attractor with additive white noise. The invariant measure is found by computing the zero (or null) mode of the linear Fokker-Planck operator as a problem of sparse linear algebra. Two variants are studied: a self-adjoint construction of the linear operator and the replacement of diffusion ...
متن کاملFokker–Planck equation with fractional coordinate derivatives
Using the generalized Kolmogorov-Feller equation with long-range interaction, we obtain kinetic equations with fractional derivatives with respect to coordinates. The method of successive approximations with the averaging with respect to fast variable is used. The main assumption is that the correlator of probability densities of particles to make a step has a power-law dependence. As a result,...
متن کامل